A novel enzymatically-mediated drug delivery carrier for bone tissue engineering applications: combining biodegradable starch-based microparticles and differentiation agents.
نویسندگان
چکیده
In many biomedical applications, the performance of biomaterials depends largely on their degradation behavior. For instance, in drug delivery applications, the polymeric carrier should degrade under physiological conditions slowly releasing the encapsulated drug. The aim of this work was, therefore, to develop an enzymatic-mediated degradation carrier system for the delivery of differentiation agents to be used in bone tissue engineering applications. For that, a polymeric blend of starch with polycaprolactone (SPCL) was used to produce a microparticle carrier for the controlled release of dexamethasone (DEX). In order to investigate the effect of enzymes on the degradation behavior of the developed system and release profile of the encapsulated osteogenic agent (DEX), the microparticles were incubated in phosphate buffer solution in the presence of alpha-amylase and/or lipase enzymes (at physiological concentrations), at 37 degrees C for different periods of time. The degradation was followed by gravimetric measurements, scanning electron microscopy (SEM) and Fourier transformed infrared (FTIR) spectroscopy and the release of DEX was monitored by high performance liquid chromatography (HPLC). The developed microparticles were shown to be susceptible to enzymatic degradation, as observed by an increase in weight loss and porosity with degradation time when compared with control samples (incubation in buffer only). For longer degradation times, the diameter of the microparticles decreased significantly and a highly porous matrix was obtained. The in vitro release studies showed a sustained release pattern with 48% of the encapsulated drug being released for a period of 30 days. As the degradation proceeds, it is expected that the remaining encapsulated drug will be completely released as a consequence of an increasingly permeable matrix and faster diffusion of the drug. Cytocompatibility results indicated the possibility of the developed microparticles to be used as biomaterial due to their reduced cytotoxic effects.
منابع مشابه
The effect of starch and starch-bioactive glass composite microparticles on the adhesion and expression of the osteoblastic phenotype of a bone cell line.
There is a clear need for the development of microparticles that can be used simultaneously as carriers of stem/progenitor cells and as release systems for bioactive agents, such as growth factors or differentiation agents. In addition, when thinking on bone-tissue-engineering applications, it would be very useful if these microparticles are biodegradable and could be made to be bioactive. Micr...
متن کاملPreparation and Characterization of Rivastigmine Transdermal Patch Based on Chitosan Microparticles
Here we report a novel approach for preparation of a 6-day transdermal drug delivery system (TDDS) as treatment for mild to moderate Alzheimer’s disease. The spray drying method was used to prepare microparticles containing the anti-Alzheimer drug. The content of the drug was determined by High Performance Liquid Chromatography (HPLC) method. The morphology and size range of the microparticles ...
متن کاملPreparation and Characterization of Rivastigmine Transdermal Patch Based on Chitosan Microparticles
Here we report a novel approach for preparation of a 6-day transdermal drug delivery system (TDDS) as treatment for mild to moderate Alzheimer’s disease. The spray drying method was used to prepare microparticles containing the anti-Alzheimer drug. The content of the drug was determined by High Performance Liquid Chromatography (HPLC) method. The morphology and size range of the microparticles ...
متن کاملCurrent Concepts in Scaffolding for Bone Tissue Engineering
Bone disorders are of significant worry due to their increased prevalence in the median age. Scaffold-based bonetissue engineering holds great promise for the future of osseous defects therapies. Porous composite materials andfunctional coatings for metallic implants have been introduced in next generation of orthopedic medicine for tissueengineering. While osteoconductive materials such as hyd...
متن کاملDevelopment of an Alendronate Controlled Delivery System for Bone Repair Applications
Extended Abstract A great interest has been shown towards designing bone targeted medical delivery systems for the treatment of several bone disorders. This approach ensures the release of the drug to the site of the disease [1]. Moreover, it allows delivery of drugs that have low bioavailability when administrated by conventional routes. This leads to enhanced patient adherence and an improved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of materials science. Materials in medicine
دوره 19 4 شماره
صفحات -
تاریخ انتشار 2008